Category Archives: Information

Small molecule

In molecular biology and pharmacology, a small molecule is a low molecular weight (<900 Daltons[1]) organic compound that may help regulate a biological process, with a size on the order of 10−9 m. Most drugs are small molecules.

The upper molecular weight limit for a small molecule is approximately 900 Daltons, which allows for the possibility to rapidly diffuse across cell membranes so that they can reach intracellular sites of action.[1][2] In addition, this molecular weight cutoff is a necessary but insufficient condition for oral bioavailability. Finally, a lower molecular weight cutoff of 500 Daltons (as part of the «rule of five») has been recommended for small molecule drug development candidates based on the observation that clinical attrition rates are significantly reduced if the molecular weight is kept below this 500 Dalton limit.[3][4]

Pharmacology usually restricts the term to a molecule that binds to a specific biopolymer—such as protein or nucleic acid—and acts as an effector, altering the activity or function of the biopolymer. Small molecules can have a variety of biological functions, serving as cell signaling molecules, as drugs in medicine, as pesticides in farming, and in many other roles. These compounds can be natural (such as secondary metabolites) or artificial (such as antiviral drugs); they may have a beneficial effect against a disease (such as drugs) or may be detrimental (such as teratogens and carcinogens). Biopolymers such as nucleic acids and proteins, and polysaccharides (such as starch or cellulose) are not small molecules—though their constituent monomers—ribo- or deoxyribonucleotides, amino acids, and monosaccharides, respectively—are often considered small molecules. Very small oligomers are also usually considered small molecules, such as dinucleotides, peptides such as the antioxidant glutathione, and disaccharides such as sucrose.

Small molecules may also be used as research tools to probe biological function as well as leads in the development of new therapeutic agents. Some can inhibit a specific function of a multifunctional protein or disrupt protein—protein interactions.[5]

For example, the mechanism

For example, the mechanism of action of aspirin involves irreversible inhibition of the enzyme cyclooxygenase, therefore suppressing the production of prostaglandins and thromboxanes, thereby reducing pain and inflammation. However, some drug mechanisms of action are still unknown. For example, phenytoin is used to treat symptoms of epileptic seizures, but the mechanism by which this is achieved is still unknown, despite the fact that the drug has been in use for many years.

Another important case study

Another important case study in rational drug design is imatinib, a tyrosine kinase inhibitor designed specifically for the bcr-abl fusion protein that is characteristic for Philadelphia chromosome-positive leukemias (chronic myelogenous leukemia and occasionally acute lymphocytic leukemia). Imatinib is substantially different from previous drugs for cancer, as most agents of chemotherapy simply target rapidly dividing cells, not differentiating between cancer cells and other tissues.

A linear chain of amino acid

A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than about 20-30 residues, are rarely considered to be proteins and are commonly called peptides, or sometimes oligopeptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids; however, in certain organisms the genetic code can include selenocysteine and—in certain archaea—pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by posttranslational modification, which alters the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Sometimes proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors. Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes.

An NCE is a molecule developed by the innovator

An NCE is a molecule developed by the innovator company in the early drug discovery stage, which after undergoing clinical trials could translate into a drug that could be a cure for some disease. Synthesis of an NCE is the first step in the process of drug development. Once the synthesis of the NCE has been completed, companies have two options before them. They can either go for clinical trials on their own or license the NCE to another company. In the latter option, companies can avoid the expensive and lengthy process of clinical trials, as the licensee company would be conducting further clinical trials and subsequently launching the drug. Companies adopting this model of business would be able to generate high margins as they get a huge one-time payment for the NCE apart from entering into a revenue sharing agreement with the licensee company.

Proteins are assembled from amino

Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG (adenine-uracil-guanine) is the code for methionine. Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre-messenger RNA (mRNA) by proteins such as RNA polymerase. Most organisms then process the pre-mRNA (also known as a primary transcript) using various forms of Post-transcriptional modification to form the mature mRNA, which is then used as a template for protein synthesis by the ribosome. In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid. In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm, where protein synthesis then takes place. The rate of protein synthesis is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second.

Morphine is the most abundant

Morphine is the most abundant opiate found in opium, the dried latex from unripe seedpods of Papaver somniferum (the opium poppy). Morphine was the first active ingredient purified from a plant source. It is one of at least fifty alkaloids of several different types present in opium, poppy straw concentrate, and other poppy derivatives. The primary source of morphine is chemical extraction from opium.

Proteins are the chief actors

Proteins are the chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA, most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in a particular cell or cell type is known as its proteome.

Morphine was first isolated

Morphine was first isolated in 1804 by Friedrich Sertürner, which is generally believed to be the first ever isolation of a natural plant alkaloid in history. Sertürner began distributing it in 1817, and Merck began marketing it commercially in 1827. At the time, Merck was a single small chemists’ shop. Morphine was more widely used after the invention of the hypodermic needle in 1857. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus (Greek: ΜορφεПЌς), for its tendency to cause sleep. It is on the World Health Organization’s List of Essential Medicines, a list of the most important medication needed in a basic health system.

The chief characteristic of proteins

The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or «pocket» on the molecular surface. This binding ability is mediated by the tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids’ side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10−15 M) but does not bind at all to its amphibian homolog onconase (>1 M). Extremely minor chemical changes such as the addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine.