Home / Drugs / Starting with A / |
||||
Atovaquone |
||||
indicationFor the treatment or prevention of Pneumocystis carinii pneumonia in patients who are intolerant to trimethoprim-sulfamethoxazole (TMP-SMX). Also indicated for the acute oral treatment of mild to moderate PCP in patients who are intolerant to TMP-SMX.pharmacologyAtovaquone is a highly lipophilic drug that closely resembles the structure ubiquinone. Its inhibitory effect being comparable to ubiquinone, in sensitive parasites atovaquone can act by selectively affecting mitochondrial electron transport and parallel processes such as ATP and pyrimidine biosynthesis. For illustration, cytochrome bc1 complex (complex III) seems to serve as a highly discriminating molecular target for atovaquone in Plasmodia atovaquone has the advantage of not causing myelosuppression, which is an important issue in patients who have undergone bone marrow transplantation.mechanism of actionAtovaquone is a hydroxy- 1, 4- naphthoquinone, an analog of ubiquinone, with antipneumocystis activity. The mechanism of action against Pneumocystis carinii has not been fully elucidated. In Plasmodium species, the site of action appears to be the cytochrome bc1 complex (Complex III). Several metabolic enzymes are linked to the mitochondrial electron transport chain via ubiquinone. Inhibition of electron transport by atovaquone will result in indirect inhibition of these enzymes. The ultimate metabolic effects of such blockade may include inhibition of nucleic acid and ATP synthesis. Atovaquone also has been shown to have good in vitro activity against Toxoplasma gondii.toxicityThe median lethal dose is higher than the maximum oral dose tested in mice and rats (1825 mg/kg per day). Overdoses up to 31,500 mg of atovaquone have been reported. In one such patient who also took an unspecified dose of dapsone, methemoglobinemia occurred. Rash has also been reported after overdose.biotransformationSome evidence suggests limited metabolism (although no metabolites have been identified).absorptionThe bioavailability of atovaquone is low and variable and is highly dependent on formulation and diet. Bioavailability of the suspension increases two-fold when administered with meals. When administered with food, bioavailability is approximately 47%. Without food, the bioavailability is 23%.half life2.2 to 3.2 daysroute of eliminationThe half-life of atovaquone is long due to presumed enterohepatic cycling and eventual fecal elimination. There was little or no excretion of atovaquone in the urine (less than 0.6%).drug interactionsRifabutin: Rifabutin decreases the effect of atovaquoneRifampin: Rifampin may decrease the effect of atovaquone. Tetracycline: Tetracycline may decrease the effect of atovaquone. Zidovudine: Atovaquone increases the effect and toxicity of zidovudine |