Company InfoNewsInvestor InformationResearchDevelopmentCareersBusiness DevelopmentResourcesDrugs databaseBack to the home pageSearch  
Drugs database
Drugs A-Z

Brands A-Z

Drugs by categories

Drugs by manufacturer

Drugs by packager

Antibiotics for sale

Online Viagra bestellen in Nederland

Home / Drugs / Starting with M / Mibefradil
 
Mibefradil
 

Mibefradil was withdrawn from the market in 1998 because of potentially harmful interactions with other drugs.
BrandsPosicor
CategoriesAntihypertensive Agents
Vasodilator Agents
Calcium Channel Blockers

indication

For the treatment of angina and high blood pressure.

pharmacology

Mibefradil belongs to a group of medicines called calcium channel blocking agents, or, more commonly, calcium channel blockers. Calcium channel blocking agents affect the movement of calcium into the cells of the heart and blood vessels. As a result, they relax blood vessels and increase the supply of blood and oxygen to the heart while reducing its workload. Mibefradil is a benzimidazoyl-substituted tetraline that selectively binds and inhibits T-type calcium channels.

mechanism of action

Mibefradil is a tetralol calcium channel blocking agent that inhibits the influx of calcium ions across both the T (low-voltage) and L (high-voltage) calcium channels of cardiac and vascular smooth muscle, with a greater selectivity for T channels. Vasodilation occurs in vascular smooth muscle, causing a decrease in peripheral vascular resistance and a resulting decrease in blood pressure. Mibefradil causes a slight increase in cardiac output during chronic dosing. Mibefradil slows sinus and atrioventricular (AV) node conduction, producing a slight reduction in heart rate and a slight increase in the PR interval. It has also been shown to slightly lengthen the corrected sinus node recovery time and AH interval and to raise the Wenckebach point. The mechanism by which mibefradil reduces angina is not known, but is thought to be attributed to a reduction in heart rate, total peripheral resistance (afterload), and the heart rate–systolic blood pressure product at any given level of exercise. The result of these effects is a decrease in cardiac workload and myocardial oxygen demand.

biotransformation

The two metabolic pathways that mibefradil undergoes are esterase-catalyzed hydrolysis of the ester side chain (producing an alcohol metabolite) and cytochrome P450 3A4-catalyzed oxidation (that becomes less important during chronic dosing). The pharmacologic effect of the metabolite is approximately 10% of that of the parent mibefradil.

absorption

Bioavailability after a single dose is 70%. After multiple dosing, the proportion of mibefradil undergoing first-pass metabolism is reduced, resulting in a steady state bioavailability of approximately 90%. Food does not affect the rate or extent of absorption of mibefradil.

half life

17 to 25 hours at steady state.

drug interactions

Astemizole: Increased risk of cardiotoxicity and arrhythmias

Atomoxetine: The CYP2D6 inhibitor could increase the effect and toxicity of atomoxetine

Cisapride: Mibefradil increases levels of cisapride

Tacrolimus: The calcium channel blocker, Mibefradil, may increase the blood concentration of Tacrolimus. Monitor for changes in the therapeutic/toxic effects of Tacrolimus if Mibefradil therapy is initiated, discontinued or altered.

Terfenadine: Increased risk of cardiotoxicity and arrhythmias