Home / Drugs / Starting with P / |
||||
Potassium Chloride |
||||
indicationFor use as an electrolyte replenisher and in the treatment of hypokalemia.pharmacologyThe potassium ion is in the principle intracellular cation of most body tissues. Potassium ions participate in a number of essential physiological processes including the maintenance of intracellular tonicity, the transmission of nerve impulses, the contraction of cardiac, skeletal and smooth muscle, and the maintenance of normal renal function. The intracellular concentration of potassium is approximately 150 to 160 mEq per liter. The normal adult plasma concentration is 3.5 to 5 mEq per liter. An active ion transport system maintains this gradient across the plasma membrane. Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. The usual dietary intake of potassium is 50 to 100 mEq per day. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake. Such depletion usually develops as a consequence of therapy with diuretics, primarily or secondary hyperaldosteronism, diabetic ketoacidosis, or inadequate replacement of potassium in patients on prolonged parenteral nutrition. Depletion can develop rapidly with severe diarrhea, especially if associated with vomiting. Potassium depletion due to these causes is usually accompanied by concomitant loss of chloride and is manifested by hypokalemia and metabolic alkalosis. Potassium depletion may produce weakness, fatigue, disturbances of cardiac rhythm (primarily ectopic beats), prominent U-waves in the electrocardiogram, and, in advanced cases, flaccid paralysis and/or impaired ability to concentrate urine. If potassium depletion associated with metabolic alkalosis cannot be managed by correcting the fundamental cause of the deficiency, e.g., where the patient requires long-term diuretic therapy, supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels. In rare circumstances (e.g., patients with renal tubular acidosis) potassium depletion may be associated with metabolic acidosis and hyperchloremia. In such patients, potassium replacement should be accomplished with potassium salts other than the chloride, such as potassium bicarbonate, potassium citrate, potassium acetate, or potassium gluconate.mechanism of actionSupplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels.toxicityThe administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired, of if potassium is administered too rapidly intravenously, potentially fatal hyperkalemia can result. It is important to recognize that hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5-8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-wave, depression of S-T segment, and prolongation of the QT interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9-12 mEq/L).absorptionPotassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine.route of eliminationPotassium is a normal dietary constituent and, under steady-state conditions, the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake.drug interactionsClidinium: Anticholinergic agents such as clidinium may enhance the ulcerogenic effect of potassium chloride. Solid oral dosage forms of potassium chloride are contraindicated in patients with impaired gastric emptying (e.g., due to the effects of drugs such as many anticholinergics). Patients on drugs with substantial anticholinergic effects should avoid using any solid oral dosage form of potassium chloride; liquid or effervescent potassium preparations are possible alternatives.Telmisartan: Potassium Chloride may increase the hyperkalemic effect of Telmisartan. Monitor serum potassium levels during concomitant use. Tiotropium: The ulcerative effects of solid oral dosage forms of KCl may be enhanced by Tiotropium, an anticholinergic. Anticholinergics slow gastric emptying, increasing the contact time between the gastrointestinal mucosa and KCl. Prolonged exposure to KCl increases the risk of gastric and intestinal irritation and ulceration. Solid oral dosage forms of KCl should be avoided; alternatives include liquid or effervescent potassium preparations. Tolterodine: The ulcerative effects of solid oral dosage forms of KCl may be enhanced by the anticholinergic, Tolterodine. Anticholinergics slow gastric emptying, increasing the contact time between the gastrointestinal mucosa and KCl. Prolonged exposure to KCl increases the risk of gastric and intestinal irritation and ulceration. Solid oral dosage forms of KCl should be avoided; alternatives include liquid or effervescent potassium preparations. Trandolapril: The potassium salt may increase the hyperkalemic effect of Trandolapril. Trihexyphenidyl: The ulcerative effects of solid oral dosage forms of KCl may be enhanced by Trihexyphenidyl, an anticholinergic. Anticholinergics slow gastric emptying, increasing the contact time between the gastrointestinal mucosa and KCl. Prolonged exposure to KCl increases the risk of gastric and intestinal irritation and ulceration. Solid oral dosage forms of KCl should be avoided; alternatives include liquid or effervescent potassium preparations. Trimethobenzamide: The ulcerative effects of solid oral dosage forms of KCl may be enhanced by Trimethobenzamide, an anticholinergic. Anticholinergics slow gastric emptying, increasing the contact time between the gastrointestinal mucosa and KCl. Prolonged exposure to KCl increases the risk of gastric and intestinal irritation and ulceration. Solid oral dosage forms of KCl should be avoided; alternatives include liquid or effervescent potassium preparations. Trospium: The ulcerative effects of solid oral dosage forms of KCl may be enhanced by Trospium, an anticholinergic. Anticholinergics slow gastric emptying, increasing the contact time between the gastrointestinal mucosa and KCl. Prolonged exposure to KCl increases the risk of gastric and intestinal irritation and ulceration. Solid oral dosage forms of KCl should be avoided; alternatives include liquid or effervescent potassium preparations. |