Like loperamide and other opioids, morphine acts on the myenteric plexus in the intestinal tract, reducing gut motility, causing constipation. The gastrointestinal effects of morphine are mediated primarily by μ-opioid receptors in the bowel. By inhibiting gastric emptying and reducing propulsive peristalsis of the intestine, morphine decreases the rate of intestinal transit. Reduction in gut secretion and increased intestinal fluid absorption also contribute to the constipating effect. Opioids also may act on the gut indirectly through tonic gut spasms after inhibition of nitric oxide generation. This effect was shown in animals when a nitric oxide precursor, L-Arginine, reversed morphine-induced changes in gut motility.
Category Archives: Natural product drug discovery
Today, the most
Today, the most common indications for digoxin are atrial fibrillation and atrial flutter with rapid ventricular response, though beta blockers and/or calcium channel blockers are a better first choice. High ventricular rate leads to insufficient diastolic filling time. By slowing down the conduction in the AV node and increasing its refractory period, digoxin can reduce the ventricular rate. The arrhythmia itself is not affected, but the pumping function of the heart improves owing to improved filling.
The use of digoxin
The use of digoxin in heart problems during sinus rhythm was once standard, but is now controversial. In theory, the increased force of contraction should lead to improved pumping function of the heart, but its effect on prognosis is disputable, and other effective treatments are now available. Digoxin is no longer the first choice for congestive heart failure, but can still be useful in patients who remain symptomatic despite proper diuretic and ACE inhibitor treatment.
Digitalis/digoxin has recently fallen out
Digitalis/digoxin has recently fallen out of favor because it did not demonstrate a mortality benefit in patients with congestive heart failure; however, it did demonstrate a reduction in hospitalizations for this condition. Because other therapies have shown a mortality benefit in congestive heart failure, maximizing other therapies (e.g., beta blockers) first is recommended before using digoxin.
The occurrence of adverse drug reactions
The occurrence of adverse drug reactions is common, owing to its narrow therapeutic index (the margin between effectiveness and toxicity). Adverse effects are concentration-dependent, and are rare when plasma digoxin concentration is <0.8 μg/l. They are also more common in patients with low potassium levels (hypokalemia), since digoxin normally competes with K+ ions for the same binding site on the Na+/K+ ATPase pump.
Common adverse effects
Common adverse effects (≥1% of patients) include loss of appetite, nausea, vomiting and diarrhea as gastrointestinal motility increases. Other common effects are blurred vision, visual disturbances (yellow-green halos and problems with color perception), confusion, drowsiness, dizziness, insomnia, nightmares, agitation, and depression, as well as a higher acute sense of sensual activities. Less frequent adverse effects (0.1%—1%) include: acute psychosis, delirium, amnesia, convulsions, shortened QRS complex, atrial or ventricular extrasystoles, paroxysmal atrial tachycardia with AV block, ventricular tachycardia or fibrillation, and heart block. Rarely, digoxin has been shown to cause thrombocytopenia. Gynaecomastia (enlargement of breast tissue) is mentioned in many textbooks as a side effect, thought to be due to the estrogen-like steroid moiety of the digoxin molecule, but when systematically sought, the evidence for this is equivocal. The pharmacological actions of digoxin usually result in electrocardiogram changes, including ST depression or T wave inversion, which do not indicate toxicity. PR interval prolongation, however, may be a sign of digoxin toxicity. Additionally, increased intracellular Ca2+ may cause a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. The combination of increased (atrial) arrhythmogenesis and inhibited atrioventricular conduction (for example paroxysmal atrial tachycardia with A-V block — so-called «PAT with block») is said to be pathognomonic (i.e. diagnostic) of digoxin toxicity.
An often described, but
An often described, but rarely seen, adverse effect of digoxin is a disturbance of color vision (mostly yellow and green) called xanthopsia. Vincent van Gogh’s «Yellow Period» may have somehow been influenced by concurrent digitalis therapy. Other oculotoxic effects of digoxin include generalized blurry vision, as well as seeing a «halo» around each point of light. The latter effect can also be seen in van Gogh’s Starry Night. Evidence of van Gogh’s digoxin use is supported by multiple self-portraits that include the foxglove plant, from which digoxin is obtained. (e.g. Portrait of Dr. Gachet)
In overdose, the usual supportive
In overdose, the usual supportive measures are needed. If arrhythmias prove troublesome, or malignant hyperkalaemia occurs (inexorably rising potassium level due to paralysis of the cell membrane-bound, ATPase-dependent Na/K pumps), the specific antidote is antidigoxin (antibody fragments against digoxin, trade names Digibind and Digifab). Toxicity can also be treated with higher than normal doses of potassium. Digoxin is not removed by hemodialysis or peritoneal dialysis with enough effectiveness to treat toxicity.
Digoxin is usually given orally, but
Digoxin is usually given orally, but can also be given by IV injection in urgent situations (the IV injection should be slow, and heart rhythm should be monitored). While IV therapy may be better tolerated (less nausea), digoxin has a very long distribution half-life into the cardiac tissue, which will delay its onset of action by a number of hours. The half-life is about 36 hours for patients with normal renal function, digoxin is given once daily, usually in 125-μg or 250-μg doses.
In patients with decreased
In patients with decreased kidney function, the half-life is considerably longer, along with decrease in Vd, calling for a reduction in dose or a switch to a different glycoside, such as digitoxin (not available in the United States), which has a much longer elimination half-life of around seven days, elimination is mainly by renal excretion and involves P-glycoprotein which leads to significant clinical interactions with other drugs commonly used in patients with heart problems. These include: spironolactone, verapamil and amiodarone. ( Inhibit P-glycoprotein that is mainly responsible for Digoxin Clearance )