Category Archives: Nature as source of drugs

In discovery of small molecule therapeutics,

In discovery of small molecule therapeutics, an emphasis on training that provides for breadth of synthetic experience and «pace» of bench operations is clearly present (e.g., for individuals with pure synthetic organic and natural products synthesis in Ph.D. and post-doctoral positions, ibid.). In the medicinal chemistry specialty areas associated with the design and synthesis of chemical libraries or the execution of process chemistry aimed at viable commercial syntheses (areas generally with fewer opportunities), training paths are often much more varied (e.g., including focused training in physical organic chemistry, library-related syntheses, etc.).

Clinical trials designed

Clinical trials designed by a local investigator, and (in the US) federally funded clinical trials, are almost always administered by the researcher who designed the study and applied for the grant. Small-scale device studies may be administered by the sponsoring company. Clinical trials of new drugs are usually administered by a contract research organization (CRO) hired by the sponsoring company. The sponsor provides the drug and medical oversight. A CRO is contracted to perform all the administrative work on a clinical trial. For Phases 2, 3 and 4, the CRO recruits participating researchers, trains them, provides them with supplies, coordinates study administration and data collection, sets up meetings, monitors the sites for compliance with the clinical protocol, and ensures the sponsor receives data from every site. Specialist site management organizations can also be hired to coordinate with the CRO to ensure rapid IRB/IEC approval and faster site initiation and patient recruitment. Phase 1 clinical trials of new medicines are often conducted in a specialist clinical trial clinic, with dedicated pharmacologists, where the subjects can be observed by full-time staff. These clinics are often run by a CRO which specialises in these studies.

Ligand-based drug design (or indirect drug

Ligand-based drug design (or indirect drug design) relies on knowledge of other molecules that bind to the biological target of interest. These other molecules may be used to derive a pharmacophore model that defines the minimum necessary structural characteristics a molecule must possess in order to bind to the target. In other words, a model of the biological target may be built based on the knowledge of what binds to it, and this model in turn may be used to design new molecular entities that interact with the target. Alternatively, a quantitative structure-activity relationship (QSAR), in which a correlation between calculated properties of molecules and their experimentally determined biological activity, may be derived. These QSAR relationships in turn may be used to predict the activity of new analogs.

The sequence of the

The sequence of the DNA is stored in databases available to anyone on the Internet. The U.S. National Center for Biotechnology Information (and sister organizations in Europe and Japan) house the gene sequence in a database known as GenBank, along with sequences of known and hypothetical genes and proteins. Other organizations, such as the Genome Bioinformatics Group at the University of California, Santa Cruz, and Ensembl present additional data and annotation and powerful tools for visualizing and searching it. Computer programs have been developed to analyze the data, because the data itself is difficult to interpret without such programs.

Disease-causing mutations in specific genes are

Disease-causing mutations in specific genes are usually severe in terms of gene function, and are fortunately rare, thus genetic disorders are similarly individually rare. However, since there are many genes that can vary to cause genetic disorders, in aggregate they constitute a significant component of known medical conditions, especially in pediatric medicine. Molecularly characterized genetic disorders are those for which the underlying causal gene has been identified, currently there are approximately 2,200 such disorders annotated in the OMIM database.

The absolute bioavailability of a drug,

The absolute bioavailability of a drug, when administered by an extravascular route, is usually less than one (i.e., F <100%). Various physiological factors reduce the availability of drugs prior to their entry into the systemic circulation. Whether a drug is taken with or without food will also affect absorption, other drugs taken concurrently may alter absorption and first-pass metabolism, intestinal motility alters the dissolution of the drug and may affect the degree of chemical degradation of the drug by intestinal microflora. Disease states affecting liver metabolism or gastrointestinal function will also have an effect.

The local investigators

The local investigators are responsible for conducting the study according to the study protocol, and supervising the study staff throughout the duration of the study. The local investigator or his/her study staff are also responsible for ensuring the potential subjects in the study understand the risks and potential benefits of participating in the study; in other words, they (or their legally authorized representatives) must give truly informed consent. They are responsible for reviewing all adverse event reports sent by the sponsor. (These adverse event reports contain the opinion of both the investigator at the site where the adverse event occurred, and the sponsor, regarding the relationship of the adverse event to the study treatments). They also are responsible for making an independent judgment of these reports, and promptly informing the local IRB of all serious and study treatment-related adverse events.

Protein-coding sequences (specifically, coding

Protein-coding sequences (specifically, coding exons) constitute less than 1.5% of the human genome. In addition, about 26% of the human genome is introns. Aside from genes (exons and introns) and known regulatory sequences (8–20%), the human genome contains regions of noncoding DNA. The exact amount of noncoding DNA that plays a role in cell physiology has been hotly debated. Recent analysis by the ENCODE project indicates that 80% of the entire human genome is either transcribed, binds to regulatory proteins, or is associated with some other biochemical activity.

A biological target is anything within a living

A biological target is anything within a living organism to which some other entity, like an endogenous ligand or a drug is directed and/or binds. Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus. The implication is that a target is «hit» by a signal and its behavior or function is then changed. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors.

Studies published by diMasi et al. in 2003,

Studies published by diMasi et al. in 2003, report an average pre-tax, capitalized cost of approximately $800 million to bring one of the drugs from the study to market. Also, this $800 million figure includes opportunity costs of $400 million. A study published in 2006 estimates that costs vary from around $500 million to $2 billion depending on the therapy or the developing firm. A study published in 2010 in the journal Health Economics, including an author from the US Federal Trade Commission, was critical of the methods used by diMasi et al. but came up with a higher estimate of ~$1.2 billion.