In molecular biology and pharmacology, a small molecule is a low molecular weight (<900 Daltons[1]) organic compound that may help regulate a biological process, with a size on the order of 10−9 m. Most drugs are small molecules.
The upper molecular weight limit for a small molecule is approximately 900 Daltons, which allows for the possibility to rapidly diffuse across cell membranes so that they can reach intracellular sites of action.[1][2] In addition, this molecular weight cutoff is a necessary but insufficient condition for oral bioavailability. Finally, a lower molecular weight cutoff of 500 Daltons (as part of the «rule of five») has been recommended for small molecule drug development candidates based on the observation that clinical attrition rates are significantly reduced if the molecular weight is kept below this 500 Dalton limit.[3][4]
Pharmacology usually restricts the term to a molecule that binds to a specific biopolymer—such as protein or nucleic acid—and acts as an effector, altering the activity or function of the biopolymer. Small molecules can have a variety of biological functions, serving as cell signaling molecules, as drugs in medicine, as pesticides in farming, and in many other roles. These compounds can be natural (such as secondary metabolites) or artificial (such as antiviral drugs); they may have a beneficial effect against a disease (such as drugs) or may be detrimental (such as teratogens and carcinogens). Biopolymers such as nucleic acids and proteins, and polysaccharides (such as starch or cellulose) are not small molecules—though their constituent monomers—ribo- or deoxyribonucleotides, amino acids, and monosaccharides, respectively—are often considered small molecules. Very small oligomers are also usually considered small molecules, such as dinucleotides, peptides such as the antioxidant glutathione, and disaccharides such as sucrose.
Small molecules may also be used as research tools to probe biological function as well as leads in the development of new therapeutic agents. Some can inhibit a specific function of a multifunctional protein or disrupt protein—protein interactions.[5]