Category Archives: Nature as source of drugs

An example of a variation map is the

An example of a variation map is the HapMap being developed by the International HapMap Project. The HapMap is a haplotype map of the human genome, «which will describe the common patterns of human DNA sequence variation.» It catalogs the patterns of small-scale variations in the genome that involve single DNA letters, or bases.

Bioavailability is commonly a limiting factor

Bioavailability is commonly a limiting factor in the production of crops (due to solubility limitation or adsorption of plant nutrients to soil colloids) and in the removal of toxic substances from the food chain by microorganisms (due to sorption to or partitioning of otherwise degradable substances into inaccessible phases in the environment). A noteworthy example for agriculture is plant phosphorus deficiency induced by precipitation with iron and aluminum phosphates at low soil pH and precipitation with calcium phosphates at high soil pH. Toxic materials in soil, such as lead from paint may be rendered unavailable to animals ingesting contaminated soil by supplying phosphorus fertilizers in excess. Organic pollutants such as solvents or pesticides may be rendered unavailable to microorganisms and thus persist in the environment when they are adsorbed to soil minerals or partition into hydrophobic organic matter.

Informed consent is clearly

Informed consent is clearly a ’necessary’ condition for ethical conduct but does not ’ensure’ ethical conduct. The final objective is to serve the community of patients or future patients in a best-possible and most responsible way. However, it may be hard to turn this objective into a well-defined, quantified, objective function. In some cases this can be done, however, for instance, for questions of when to stop sequential treatments (see Odds algorithm), and then quantified methods may play an important role.

The haploid human genome

The haploid human genome contains approximately 20,000 protein-coding genes, significantly fewer than had been anticipated. Protein-coding sequences account for only a very small fraction of the genome (approximately 1.5%), and the rest is associated with non-coding RNA molecules, regulatory DNA sequences, LINEs, SINEs, introns, and sequences for which as yet no function has been elucidated.

In other words, the

In other words, the considerable observable differences between humans and chimps may be due as much or more to genome level variation in the number, function and expression of genes rather than DNA sequence changes in shared genes. Indeed, even within humans, there has been found to be a previously unappreciated amount of copy number variation (CNV) which can make up as much as 5 — 15% of the human genome. In other words, between humans, there could be +/- 500,000,000 base pairs of DNA, some being active genes, others inactivated, or active at different levels. The full significance of this finding remains to be seen. On average, a typical human protein-coding gene differs from its chimpanzee ortholog by only two amino acid substitutions; nearly one third of human genes have exactly the same protein translation as their chimpanzee orthologs. A major difference between the two genomes is human chromosome 2, which is equivalent to a fusion product of chimpanzee chromosomes 12 and 13 (later renamed to chromosomes 2A and 2B, respectively).

In addition, drug development is required to establish

In addition, drug development is required to establish the physicochemical properties of the NCE: its chemical makeup, stability, solubility. The process by which the chemical is made will be optimized so that from being made at the bench on a milligram scale by a medicinal chemist, it can be manufactured on the kilogram and then on the ton scale. It will be further examined for its suitability to be made into capsules, tablets, aerosol, intramuscular injectable, subcutaneous injectable, or intravenous formulations. Together these processes are known in preclinical development as Chemistry, Manufacturing and Control (CMC).

In the US, the FDA can

In the US, the FDA can audit the files of local site investigators after they have finished participating in a study, to see if they were correctly following study procedures. This audit may be random, or for cause (because the investigator is suspected of fraudulent data). Avoiding an audit is an incentive for investigators to follow study procedures.

Within the field of organic

Within the field of organic chemistry, the definition of natural products is usually restricted to mean purified organic compounds isolated from natural sources that are produced by the pathways of primary or secondary metabolism. Within the field of medicinal chemistry, the definition is often further restricted to secondary metabolites. Secondary metabolites are not essential for survival, but nevertheless provide organisms that produce them an evolutionary advantage. Many natural products are cytotoxic and have been selected and optimized through evolution for use as «chemical warfare» agents against, prey, predators, and competing organisms.

One historical misconception

One historical misconception regarding the ncRNAs is that they lack critical genetic information or function. Rather, these ncRNAs are often critical elements in gene regulation and expression. Noncoding RNA also contributes to epigenetics, transcription, RNA splicing, and the translational machinery. The role of RNA in genetic regulation and disease offers a new potential level of unexplored genomic complexity.

Discovery is the identification

Discovery is the identification of novel active chemical compounds, often called «hits», which are typically found by assay of compounds for a desired biological activity. Initial hits can come from repurposing existing agents toward a new pathologic processes, and from observations of biologic effects of new or existing natural products from bacteria, fungi, plants, etc. In addition, hits also routinely originate from structural observations of small molecule «fragments» bound to therapeutic targets (enzymes, receptors, etc.), where the fragments serve as starting points to develop more chemically complex forms by synthesis. Finally, hits also regularly originate from en-masse testing of chemical compounds against biological targets, where the compounds may be from novel synthetic chemical libraries known to have particular properties (kinase inhibitory activity, diversity or drug-likeness, etc.), or from historic chemical compound collections or libraries created through combinatorial chemistry. While a number of approaches toward the identification and development of hits exist, the most successful techniques are based on chemical and biological intuition developed in team environments through years of rigorous practice aimed solely at discovering new therapeutic agents.