Category Archives: Nature as source of drugs

The Human Genome

The Human Genome Project (HGP) is an international scientific research project with the goal of determining the sequence of chemical base pairs which make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and functional standpoint. It remains the world’s largest collaborative biological project. The project was proposed and funded by the US government ; planning started in 1984, the project got underway in 1990, and was declared complete in 2003. A parallel project was conducted outside of government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in universities and research centres in China, France, Germany, Japan, Spain, the United Kingdom, and the United States.

The genomic loci and

The genomic loci and length of certain types of small repetitive sequences are highly variable from person to person, which is the basis of DNA fingerprinting and DNA paternity testing technologies. The heterochromatic portions of the human genome, which total several hundred million base pairs, are also thought to be quite variable within the human population (they are so repetitive and so long that they cannot be accurately sequenced with current technology). These regions contain few genes, and it is unclear whether any significant phenotypic effect results from typical variation in repeats or heterochromatin.

The biological half-life of water

The biological half-life of water in a human is about 7 to 14 days. It can be altered by behavior. Drinking large amounts of alcohol will reduce the biological half-life of water in the body. This has been used to decontaminate humans who are internally contaminated with tritiated water (tritium). Drinking the same amount of water would have a similar effect, but many would find it difficult to drink a large volume of water. The basis of this decontamination method (used at Harwell) is to increase the rate at which the water in the body is replaced with new water.

To be ethical, researchers must

To be ethical, researchers must obtain the full and informed consent of participating human subjects. (One of the IRB’s main functions is to ensure potential patients are adequately informed about the clinical trial.) If the patient is unable to consent for him/herself, researchers can seek consent from the patient’s legally authorized representative. In California, the state has prioritized the individuals who can serve as the legally authorized representative.

The human genome is the complete

The human genome is the complete set of genetic information for humans (Homo sapiens). This information is encoded as DNA sequences within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. Human genomes include both protein-coding DNA genes and noncoding DNA. Haploid human genomes (contained in egg and sperm cells) consist of three billion DNA base pairs, while diploid genomes (found in somatic cells) have twice the DNA content. While there are significant differences among the genomes of human individuals (on the order of 0.1%), these are considerably smaller than the differences between humans and their closest living relatives, the chimpanzees (approximately 4%) and bonobos.

With the advent

With the advent of the Human Genome and International HapMap Project, it has become feasible to explore subtle genetic influences on many common disease conditions such as diabetes, asthma, migraine, schizophrenia, etc. Although some causal links have been made between genomic sequence variants in particular genes and some of these diseases, often with much publicity in the general media, these are usually not considered to be genetic disorders per se as their causes are complex, involving many different genetic and environmental factors. Thus there may be disagreement in particular cases whether a specific medical condition should be termed a genetic disorder. The categorized table below provides the prevalence as well as the genes or chromosomes associated with some human genetic disorders.

One way to resolve this problem

One way to resolve this problem is to define «reliable bioavailability» as positive bioavailability results (an absorption meeting a predefined criteria) that include 84% of the trial subjects and «universal bioavailability» as those that include 98% of the trial subjects. This reliable-universal framework would improve communications with physicians and consumers such that, if it were included on products labels for example, make educated choices as to the benefits of a formulation for them directly. In addition, the reliable-universal framework is similar to the construction of confidence intervals, which statisticians have long offered as one potential solution for dealing with small samples, violations of statistical assumptions or large standard deviations.

The IRB scrutinizes

The IRB scrutinizes the study for both medical safety and protection of the patients involved in the study, before it allows the researcher to begin the study. It may require changes in study procedures or in the explanations given to the patient. A required yearly «continuing review» report from the investigator updates the IRB on the progress of the study and any new safety information related to the study.

Pseudogenes are inactive copies of protein-coding

Pseudogenes are inactive copies of protein-coding genes, often generated by gene duplication, that have become nonfunctional through the accumulation of inactivating mutations. Table 1 shows that the number of pseudogenes in the human genome is on the order of 13,000, and in some chromosomes is nearly the same as the number of functional protein-coding genes. Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution.

In particular, medicinal chemistry in its most

In particular, medicinal chemistry in its most common guise—focusing on small organic molecules—encompasses synthetic organic chemistry and aspects of natural products and computational chemistry in close combination with chemical biology, enzymology and structural biology, together aiming at the discovery and development of new therapeutic agents. Practically speaking, it involves chemical aspects of identification, and then systematic, thorough synthetic alteration of new chemical entities to make them suitable for therapeutic use. It includes synthetic and computational aspects of the study of existing drugs and agents in development in relation to their bioactivities (biological activities and properties), i.e., understanding their structure-activity relationships (SAR). Pharmaceutical chemistry is focused on quality aspects of medicines and aims to assure fitness for purpose of medicinal products.